Evaluating Wireless LAN Access Methods in Presence of Transmission Errors

IEEE INFOCOM 2006, Poster session

Elena Lopez-Aguilera Martin Heusse Franck Rousseau Andrzej Duda Jordi Casademont

Outline

- Introduction
- Principles of chosen Access Methods
- Simulation environment
- System performance
- Conclusions

- 1997: IEEE defines the first standard IEEE 802.11 for Wireless Local Area Networks
 - Successive variants have increased the nominal bit rate: IEEE 802.11 b/g/a
 - The MAC layer remains unchanged
 - Much research effort spent on improving MAC performance

Introduction

IEEE 802.11 Distributed Coordination Function

- Before initiating a transmission, a station senses the channel during a DIFS Time:
 - \checkmark the medium is sensed idle \rightarrow transmission allowed
 - ✓ the medium is sensed busy → next attempt of transmission at DIFS + backoff time
- Backoff time: integer number of time slots distributed uniformly in [0, CW-1]
- After each data frame succesfully received, the receiver transmits an ACK after a SIFS Time

Chosen Access Methods

- Different MAC proposals for improving IEEE 802.11 Wireless LANs
 - Slow Decrease
 - Asymptotically Optimal Backoff (AOB)
 - Idle Sense

Principles of chosen Access Methods

Slow Decrease

Objective: adapting CW of each station to the current network congestion level

After each successful transmission:

$$CW_{new} = \max(CW_{\min}, 2^{-g} CW_{old})$$

➤ the slowest decrease, which achieves the best performance, for
 ✓ g=1 → CW_{new} = 0.5 · CW_{old}
 ➤ Preserves the exponential backoff mechanism of IEEE
 802.11 DCF

Principles of chosen Access Methods

- Asymptotically Optimal Backoff (AOB)
 - > Each host computes the *Probability of Transmission:*

$$PT = 1 - \min\left(1, \frac{SU}{SU_{opt}}\right)^{\Lambda}$$

Na: Number of attempts for the transmission of a frame
 Slot Utilization (SU):

$$SU = \frac{Num_Busy_Slots}{Num_Available_Slots}$$

- If the transmission is rescheduled, a new backoff interval is computed
 - ✓ AOB preserves the exponential backoff mechanism of IEEE 802.11 DCF

Principles of chosen Access Methods

Idle Sense

- Each host estimates the number of consecutive idle slots between 2 transmission attempts
 - By comparing the estimate with a target value, hosts adjust their CW using AIMD principle
- Contending hosts do not perform the exponential backoff mechanism of IEEE 802.11 DCF
- Up to now, the different proposals have been compared under ideal channel conditions
 - Objective: Performance analysis of the different proposals in adverse transmission conditions

Simulation environment

- Simulation parameters
 - Physical layer of IEEE 802.11g
 - 1 BSS: every station subject to the same BER

✓ FER=1-(1-BER)[/]

- ✓ FER: Frame error ratio; *I*: frame size in bits
- Payload size of 1500 bytes and transmission rate of 54 Mbps

Greedy hosts

Number of idle slots vs. number of stations

BER=10⁻⁵, FER_{Data}=12%, FER_{ACK}=0.65%

- Channel Access Fairness: Jain Index
 - Number of stations = 25, BER=10⁻⁵, FER_{Data}=12%, FER_{ACK}=0.65%

- AOB and Idle Sense provide significant improvement of the throughput performance
- Idle Sense
 - > number of *idle slots* closer to the *target* than AOB
 - better Channel Access Fairness

Number of idle slots vs. number of stations

BER=10⁻⁴, FER_{Data}=72%, FER_{ACK}=6.4%

- Fairness: Jain Index
 - Number of stations = 25, BER=10⁻⁴, FER_{Data}=72%, FER_{ACK}=6.4%

Idle Sense

- the best overall throughput performance
- number of idle slots closer to the target: it does not perform the exponential backoff algorithm
- better Channel Access Fairness

• *Slow Decrease* and *AOB*:

- > do not improve the IEEE 802.11 DCF performance
- perform the exponential backoff after collisions and frames losses

Conclusions

- Evaluation of different MAC proposals for IEEE 802.11
 Wireless LAN in adverse transmission conditions
 - Slow Decrease
 - Asymptotically Optimal Backoff
 - Idle Sense
- Idle Sense does not use the exponential backoff algorithm
 - > number of *idle slots* closer to the target value
 - higher throughput
 - better channel access fairness

Next steps

- Cells composed of stations subject to different BER values
- Stations working at different transmission rates
- Multicell environments

